Number Theory $99.95. sierpinski, waclaw. 250 Problems in Elementary Number Theory. sierpinski,waclaw and Schinzel, Andrzej. Elementary Theory of Numbers, 2nd Eng. http://www.ericweisstein.com/encyclopedias/books/NumberTheory.html
Extractions: see also Combinatorics Number Theory Riemann Zeta Function Adams, William W. and Goldstern, Larry Joel. Introduction to Number Theory. Adler, Andrew and Coury, John E. Theory of Numbers: A Text and Source Book of Problems. Jones and Bartlett, 1995. 401 p. $?. Andrews, George E. Number Theory. New York: Dover, 1994. 259 p. $6.95. Andrews, George E. (Ed.). Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987. Boston, MA: Academic Press, 1988. 609 p. $69. Anglin, W.S. The Queen of Mathematics: An Introduction to Number Theory. Dordrecht, Netherlands: Kluwer, 1995. $?. Apostol, Tom M. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976. 338 p. $45. Ayoub, Raymond George. An Introduction to the Analytic Theory of Numbers. Providence, RI: Amer. Math. Soc., 1963. Out of print. ISBN: 0608116270. $?. Bach, Eric and Shalit, Jeffrey. Algebraic Number Theory, Vol. 1. Efficient Algorithms. Cambridge, MA: MIT Press, 1996. 496 p. $45.
History Of Astronomy: Persons (S) Math.). sierpinski, waclaw (18821969) Short biography and references(MacTutor Hist. Math.). Sigüenza y Gongora, Carlos de (1645 http://www.astro.uni-bonn.de/~pbrosche/persons/pers_s.html
Extractions: Sabliere (18th century) Sacrobosco: see Johannes de Sacrobosco (c.1195-1256) Sagan, Carl Edward Saha, Meghnad (1893-1956) Saint Vincent, Gregorius [Gregory of Saint Vincent] (1584-1667) Salomonovich, Alexander (b. 1916) Salpeter, Edwin Ernest (b. 1924) Sandage, Allan Rex (b. 1926) Sands, Benjamin F. (1812-1883) Short biography and references From the Catholic Encyclopedia, 1913
Sierpinskitree Info Window WHAT IS IT? The fractal that this model produces was discoveredby the great Polish mathematician waclaw sierpinski in 1916. http://ccl.northwestern.edu/cm/models/sierpinskitree/info.html
Sierpinski Translate this page como Triângulo de sierpinski. Foi descoberto em 1917 pelo matemáticopolaco waclaw sierpinski. Tem várias propriedades curiosas http://www.mat.uc.pt/~jaimecs/matelem/sierp.html
The Cushman Network - Fractals other pioneers in this area, such as Georg Cantor (1872), Giuseppe Peano (1890),David Hilbert (1891), Helge von Koch (1904), waclaw sierpinski(1916), Gaston http://the.cushman.net/projects/fractals/
Extractions: Fractals and Chaos in Nature In the past two decades, scientists and mathematicians have developed a new way of looking at the universe around us, a new science that better describes the irregular shaped objects we find in nature and math. As James Gleick put it, "This new science, called chaos, offers a way of seeing order and pattern where formerly only the random, erratic, the unpredictable - in short, the chaotic - had been observed". Scientists had come upon an important tool in understanding nature. This science, along with the closely related science of fractals, models real-world situations better than anything else before. In 1961 at MIT, Edward Lorenz developed a model for an ideal weather system with few variables. He came up with three equations to reflect the changes on a computerized graph. These equations are defined to be: dx/dt = 10(y-x) He was studying changes in the weather, but he unknowingly founded the science of chaos. He discovered that small changes in the initial conditions would produce large differences in the long run (Stevens 63) The computer that Lorenz ran his system of equations on would compute the digits out to an accuracy of six decimal places. When Lorenz wanted to re-simulate a section on the graph that was produced, he started the computer over again at the beginning of the section in question, only with three digits of accuracy, instead of six. After a short period of time, Lorenz could see a large difference in the two graphs. This led to the discovery of the Lorenz attractor, a butterfly-shaped graph. When these equations are graphed on a computer, the output is chaotic, but orderly. These equations model such natural phenomena as the flow of fluid, or the movement of a water wheel
Digital Doodles - The Sierpinski Gasket random process that produces order without any type of selection. The sierpinskiGasket was developed by the Polish mathematician waclaw sierpinski (18821969 http://www.nmsr.org/digdudle.htm
Extractions: New Mexicans for Science and Reason presents Order from Chaos The Sierpinksi Gasket Creationists would have us believe than nothing ordered can ever come from a random process. Of course, evolution is not a random process; it has random elements (mutations and sex), but also has elements that are the opposite of randomness (selection and heredity). On this page, we consider the question "Can order arise from a completely random process?" The answer is " Yes! " Read on... DIGITAL DOODLES by Dave Thomas : nmsrdaveATswcp.com (Help fight SPAM! Please replace the AT with an @ ) Originally printed in NMSR Reports, July 1996, Vol. 2, No. 7) The Sierpinski Gasket is a creationist's worst nightmare. Creationists often depict evolution as a random process with no hope of ever producing order. For example, John R. Doughty wrote in his thrice-printed letter to the Alb. Journal (June 2,5, and 6, 1996) that " The point is that everything including man was carefully designed, he and she (got to have both!) did not happen by random chance, mutant processes. Such processes lead to disorder, not order
Eagle Bookshop - View Bookshelf sierpinski, P. 250 PROBLEMS IN ELEMENTARY NUMBER THEORY, 1970, £14.00,sierpinski, waclaw, ELEMENTARY THEORY OF NUMBERS, 1987, £25.00, http://www.eaglebookshop.co.uk/Maths/Algebra/The Number Theory and Systems Books
Extractions: There are 68 books on this shelf Adolphson, A.C. Analytic Number Theory and Diophantine Problems. Proceedings of a Conference at Oklahoma State University, 1984 Andrews, George E. NUMBER THEORY Apostol, Tom M. INTRODUCTION TO ANALYTIC NUMBER THEORY. Apostol, Tom M. MODULAR FUNCTIONS AND DIRICHLET SERIES IN NUMBER THEORY. Ayour, Raymond. AN INRTODUCTION TO THE ANALYTIC THEORY OF NUMBERS. Bachmann, P. NIEDERE ZAHLENTHEORIE Baker, R.C. DIOPHANTINE INEQUALITIES. IRREGULARITIES OF DISTRIBUTION. Borevich, Z.I. and Shafarevich, I.R.( translated by Newcomb Greenleaf) NUMBER THEORY. Borevich, Z.I. and Shafarevich,I.R.( translated by Newcomb Greenleaf for Scripta Technica.) NUMBER THEORY. Bressaud, David M. Facrorization and Primality Testing Burton, David M. Elementary Number Theory Algebraic Number Theory Chandrasekharan, K. INTRODUCTION TO ANALYTIC NUMBER THEORY. Cohn, Harvey ADVANCED NUMBER THEORY Conway, J.H. ON NUMBERS AND GAMES Modular Forms and Fermat's Last Theorem Dudley, Underwood
Extractions: Mansfield Library Welcome! You have reached the 50th of 58 webpages devoted to French, which is just one part of the "Language Finger" homepage, which is an index by language to the holdings of the Mansfield Library of The University of Montana This file contains citations beginning with the letters Se-Sn. For other citations beginning with S, choose S-Sd So-Stt , or Stu-Sz . For other portions of the alphabet, choose A B C D ... W , or X-Z
Who Created The Sierpinski Triangle? Who created the sierpinski Triangle? waclaw sierpinski, a math professorfrom Poland, first created the sierpinski Triangle. Ian http://www.lex5.k12.sc.us/lmes/math/sierpinski/tsld004.htm
Driehoek En Vierkant Van Sierpinski Deze merkwaardige driehoek is 40 jaar jonger dan de Cantor verzameling. Hij werddoor de Poolse wiskundige waclaw sierpinski (18821969) in 1916 ontdekt. http://134.58.34.50/Fractals/sierpinski.html
Extractions: top.frames[1].document.tree.activateItem(412); top.frames[0].document.back.setDocName("cantor.html"); top.frames[0].document.home.setDocName("intro.html"); top.frames[0].document.forward.setDocName("koch.html"); Deze merkwaardige driehoek is 40 jaar jonger dan de Cantor verzameling . Hij werd door de Poolse wiskundige Waclaw Sierpinski (1882-1969) in 1916 ontdekt. Deze mooie driehoek is zeer gemakkelijk te construeren en leunt al meer aan bij de moderne fractals. Men begint met een driehoek in het vlak waarop we iteratief een verzameling van operaties op uitvoeren : we nemen het middelpunt van de drie zijdes. Deze punten verbinden we zodat we een nieuwe driehoek krijgen. Deze nieuwe driehoek snijden we weg uit de eerste grote driehoek. In de zo ontstane 3 driehoeken passen we deze operaties terug toe. Aldus krijgen we de volgende figuren : eigenschappen van fractals komen weer duidelijk naar voren. Deze figuur is sterk verwant met de Cantor verzameling . Het is er een generalisatie van : we beschouwen een lijn die horizontaal door het midden van het vierkant gaat. We krijgen dan een verdeling zoals bij de creatie van een Cantor verzameling gebeurde. De complexiteit van de driehoek en het vierkant van Sierpinski gelijken misschien op elkaar maar zijn toch zeer verschillend. Dit hier uitleggen zo ons te ver leiden, we verwijzen dan ook naar de
Vortrag Translate this page Literatur sierpinski, waclaw. Sur une courbe dont tout point est unpoint de ramification. Comptes Rendus hebdomadaires des séances http://www.canisianum.de/bisher/projekte/fraktale/VortragMuenster/Vortrag.html
Extractions: Week of Jan. 11, 2003; Vol. 163, No. 2 Ivars Peterson The pursuit of prime numbersintegers evenly divisible only by themselves and 1can lead to all sorts of curious results and unexpected patterns. In some instances, you may even encounter a mysterious absence of primes. In 1960, Polish mathematician Waclaw Sierpinski (18821969) proved that there are infinitely many odd integers k such that k times 2 n + 1 is never prime for all values of n greater than or equal to 1. A multiplier k with this property is called a Sierpinski number That's a strange result. There appears to be no obvious reason why these particular expressions never yield a prime. After all, formulas of the form m times 2 n + 1 nearly always eventually produce a prime, so it's not unreasonable to expect that all such expressions would. Nonetheless, exceptions do occur, putting Sierpinski numbers in the research spotlight. In 1962, John Selfridge discovered what remains the smallest known Sierpinski number
Extractions: SIALA, Ali ( - ) Libyan scientist - Libya 1110; 1110a SIBELIUS, Johan Julius Christian (1865-1957) Finnish composer, conductor, educator, mason - Finland 249; 353; 433 Romania 1741 SIBERT, William Luther (1860-1935) American general, engineer - United States-Canal Zone 110 SICCARDSBURG, August Siccard von (1813-1868) Austrian architect, educator - Austria B125; B248 SIDAR, Pablo ( -1930) Mexican aviator - Spain C54 SIDDI LEBBE, Mohammed Cassim (1838-1898) Moslem lawyer, educator, journalist - Sri Lanka 526 SIDDONS, Sarah Kemble (1755-1831) English actress, sculptor - Paraguay (M)2369 Yemen Kingdom (Mich.)485 SIDEBOTTOM, Arnold (1954- ) Sportsman, cricket player - Tuvalu-Nui 8521-2 SIDIBE, Mambi ( - ) Malean philosopher - Mali 407 SIDLO, Janusz ( - ) Polish sportsman, javelin throw - Poland 754 SIDORENKO, A. W. (1917-1982) Russian geologist - Russia 5196 SIEG, John (1903-1942) German-American communist, journalist - German Democratic Republic 2331 SIEGBAHN, Karl Manne Georg (1886-1978) Swedish scientist. Born December 3, 1886 in Orebro, Sweden, he won the 1924 Nobel Prize in physics for discoveries in the field of X-ray spectroscopy. He died September 26, 1978 in Stockholm, Sweden. - Guyana GUY1995L20.38 SIEGEL, Jerry
The Dimension Of The Sierpinski Gasket Turn of the century mathematician waclaw sierpinski's name was givento several fractal objects, the most famous being his Gasket. http://www.mathsci.appstate.edu/~hph/fractal/fractal2/sierp.html
Extractions: The Dimension of the Sierpinski Gasket Turn of the century mathematician Waclaw Sierpinski's name was given to several fractal objects, the most famous being his Gasket. To build the Sierpinski Gasket, start with an equilateral triangle with side length 4 inches, completely shaded. (Iteration 0, or the initiator) Cut out of each triangle the smaller triangle formed by connecting the midpoints of each of the sides. (the generator) Note that we are really taking the original triangle and replacing it with three new triangles, each 1/2 the side length of the original. So, we're using a scale factor of 2. The scale - dimension formula gives: What power of 2 gives 3? Well 2 = 2 and 2 = 4, so D must be somewhere between 1 and 2. To find it exactly, we could use trial and error: D = 1.5 D = 2.828427 Too small D = 1.8 D = 3.482202 Too big D = 1.6 D = 3.031433 Too big D = 1.58 D = 2.989699 Too small but closer! The actual answer to 6 decimal places is: 1.584962. This curve has fractional dimension hence the word fractal! This answer can be found directly using a property of logarithms: So we simply calculate log(3) / log(2) to get 1.584962!
Sierpinski Gasket sierpinski Gasket Turn of the century mathematician waclaw sierpinski's namewas given to several fractal objects, the most famous being his Gasket. http://www.mathsci.appstate.edu/~hph/fractal/fractal1/sierp.html
Extractions: Sierpinski Gasket Turn of the century mathematician Waclaw Sierpinski's name was given to several fractal objects, the most famous being his Gasket. This surface is idiocyncratic in that it has no area. To build the Sierpinski Gasket, start with an equilateral triangle with side length 4 inches, completely shaded. (Iteration 0, or the initiator) Cut out of each triangle the smaller triangle formed by connecting the midpoints of each of the sides. (the generator) Repeat this process on all shaded triangles. Stages 0, 1 and 2 are shown below. The limiting figure for this process is called the Sierpinski Gasket. This can be done with a square as follows, too, yielding the Sierpinski Carpet; shown here is iteration 2: Back to: Activity Page
E21-10a25-10 374 p. sierpinski, waclaw / General Topology . New-York DoverPublications, Inc, 2000 .- 290 p. BALAKRISHNAN, R., RANGANATHAN http://www.math.univ-montp2.fr/BIB/E21-10a25-10.html
Extractions: HOCKING, John G., YOUNG, Gail S. / Topology New-York : Dover Publications, Inc, 1961 .- 374 p. SIERPINSKI, Waclaw / General Topology New-York : Dover Publications, Inc, 2000 .- 290 p. BALAKRISHNAN, R., RANGANATHAN, K. / A Textbook of Grapf Theory New-York : Springer, 2000 .- 227 p. (Uiversitext) POLSTER, Burkard / A Geometrical Picture Book New-York : Springer, 1998 .- 291 p. (Universitext) KRESS, Rainer / Linear Integral Equations New-York : Springer, 1999 .- 365 p. (Applied Mathematical Sciences ; 82) HUMPHREYS, James E. / Linear Algebraic Groups New-York : Springer, 1998 .- (Graduate Texts in Mathematics ; 21) ZHANG, Fuzhen / Matrix Theory : Basic Results and Techniques New-York : Springer, 1999 .- 277 p. (Universitext) BEARDON, Alan F. / The Geometry of Discrtete Groups New-York : Springer, 1983 .- 337 p. (Graduate Texts in Mathematics ; 91) ANGLIN, W.S. / Mathematics : A concise History and Philosophy New-York : Springer, 1994 .- 261 p. (Undergraduate Texts in Mathematics) MUSIELA, Marek, RUTKOWSKI, Marek / Martingale Methods in Financial Modelling Berlin : Springer, 1997 .- 518 p. (Applications of Mathematics ; 36)
Sierpinski Teppich / Fraktale / Panoptikum / Peter Schenk Translate this page Top / Navigation Sierpinksi waclaw sierpinski, 1882-1969, war Professorin Lemberg (ukrainisch Lviv, polnisch Lwów) und Warschau. http://peter.schenk.com/panopt/fraktale/sierp.htm
Extractions: Der Sierpinski-Teppich (Dimension D = log 8 / log 3 = 1,8927) ist universell für alle kompakten eindimensionalen Objekte in der Ebene! Dieser mathematische Sachverhalt bedeutet u.a., dass er alles beinhaltet, was sich schriftlich je niederschreiben lässt - er kann somit als universelle Bibliothek verwendet werden !!! Top Navigation Waclaw Sierpinski, 1882-1969, war Professor in Lemberg (ukrainisch Lviv, polnisch Lwów) und Warschau. Er war in Polen einer der einflussreichsten Mathematiker seiner Zeit. Ein Mondkrater (27.2° S, 154.5° E, also auf der Mondrückseite und somit von der Erde aus immer unsichtbar, Durchmesser 69.0 km) ist seit 1970 nach ihm benannt.
Sierpinski Fractals waclaw sierpinski (18821969) was a Polish mathematician. His workpredated Mandelbrot's discovery of fractals. He is probably best http://www.math.youngzones.org/Fractal webpages/sierpinski_fractals.html
Extractions: Avg. Sacco Nicola Sacher-Masoch Sackville-West Vita Sade Alphonse de Saijo Al Saki Salathiel Salinger J.D. Salis Rodolphe Salmugundi Sampas Stella Sampas Tony Sanders Ed Sandino Augusto Cesar Sanford Isabel Sanger Margaret Sanjaya SantaClaus Conquers the Martians(64) Santayana George Sappho Saranyu Savio Mario Savitar Sawyer Tom Schiele Schnabel Artur Schneider Rob Schubert Franz Schulhoff Schulz Schumann Robert Schwartz Rose Science Q Science Friction Scorpio Rising Scott Chloe Scott Jack Scott William Scott Winfield Scott A Scotus Duns Segal Erich Sekula Sonia Serene Velocity Seuss Doctor Sgambati Giovanni Shabazz Betty Sharits Paul Shenandoah Shepard Sam Shields Brooke Shirer William Shrapnel Henry Siddal Elizabeth Sidney Philip Sierpinski Waclaw Simmons Arthur Simnel Lambert Simpleton Simpson Arnelle Simpson Charles Simpson Jason Simpson Nicole Sin Yi Sung Sinatra Frank Sinclair Upton Singleton John Sitting Bull Skibbe Lawrence Skolnick Sleep Dirt (1979) Slick Grace Slovik Edward Smith Bessie Smith Harry Smith Jack Smith Kate Smith Patti Snyder Ruth Solanas Valerie Solomon Carl Solovyov Vladimir S.