Geometry.Net - the online learning center
Home  - Scientists - Schwarzschild Karl

e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Schwarzschild Karl:     more books (22)
  1. Red Prussian: Life and Legend of Karl Marx by Leopold Schwarzschild, 1986-04
  2. Gesammelte Werke / Collected Works: Volume 2 (German and English Edition) (v. 2) by Karl Schwarzschild, 1992-08-10
  3. Gesammelte Werke/Collected Works (Gesammelte Werke - Collected Works) by Karl Schwarzschild, 1992-12
  4. Die Poincarésche Theorie Des Gleichgewichts Einer Homogenen Rotierenden Flüssigkeitsmasse (German Edition) by Karl Schwarzschild, 2010-03-31
  5. Die Poincaresche Theorie Des Gleichgewichts: Einer Homogenen Rotierenden Flussigkeitsmasse (1897) (German Edition) by Karl Schwarzschild, 2010-05-23
  6. Karl Marx; the Red Prussian (The Universal library) by Leopold Schwarzschild, 1964
  7. People From Hesse-Nassau: Theodor W. Adorno, Otto Hahn, Paul Hindemith, Hans-Georg Gadamer, Karl Schwarzschild, Leo Strauss, Hans Mommsen
  8. Karl Schwarzschild. by Karl (1873-1916)] PARKHURST, J.A. [SCHWARZSCHILD, 1916-01-01
  9. University of Strasbourg Alumni: Paul Ehrlich, Klemens Wenzel, Prince Von Metternich, Karl Schwarzschild, Johann Gottlob Schneider
  10. Astrophysiker: Stephen Hawking, Karl Schwarzschild, Hannes Alfvén, Harald Lesch, Thomas Gold, Walter Baade, Jacques Vallée, Erich Jantsch (German Edition)
  11. Dem Andenken Karl Schwarzschild. Reden, gehalten am Sarge anlässlich der Trauerfeiern in Potsdam und Göttingen. by Karl (1873-1916)] RUNGE, Carl David Tolmé, et al. [SCHWARZSCHILD, 1916-01-01
  12. Karl Schwarzschild Observatory
  13. Gesammelte Werke / Collected Works: Volumes 1-3 (German and English Edition) (Vol 1-3) by Karl Schwarzschild, 1998-10-15
  14. Die Poincaresche Theorie Des Gleichgewichts: Einer Homogenen Rotierenden Flussigkeitsmasse (1897) (German Edition) by Karl Schwarzschild, 2010-09-10

81. Eléments De Relativité Générale
Translate this page Quelques semaines plus tard, l'astronome karl schwarzschild publia la premièresolution exacte de l'équation d'Einstein donnant la géométrie de l'espace
http://cdfinfo.in2p3.fr/Culture/Cosmologie/cosmorg5.html
Schwarzschild
Pour un corps "ordinaire" comme le Soleil ou la Terre, le rayon de Schwarzschild rS = 2GM/c2 est beaucoup plus petit que le rayon du corps : le rayon du Soleil est 700 000 km, tandis que rS = 3 km. La métrique de Schwarzschild décrit l’espace-temps à l’extérieur du corps, et elle se complète à l’intérieur par une "calotte" dépendant du profil de densité du corps. Pour un corps plus petit que son rayon de Schwarzschild, la singularité de la métrique à r = rS est un artefact
Un signal lumineux "sortant d’un champ de gravitation" est décalé vers le rouge. Le temps propre n’est en effet pas le même aux coordonnées r1 et r2 (et il diffère aussi du temps propre à l’infini, qui n’est autre que le paramètre t de la métrique). Cela entraîne un décalage de fréquence :
Une autre conséquence de la métrique de Schwarzschild est qu’un rayon lumineux est dévié d’un angle Df = 4GM/r0 (où r0 est la distance minimale d’approche), indépendamment de la longueur d’onde ou de la polarisation. C’est 2 fois la valeur newtonienne. Au bord du Soleil Df = 1.75" , mais bien sûr, la déviation est d'autant plus petite que la ligne de visée s'écarte du Soleil et n'est plus que de 0.004" à 90° du Soleil.

82. Karl Schwarzschild
Translate this page karl schwarzschild (1873-1916) est un astronome, un mathématicien et un physicienallemand né à Francfort, qui prédit l'existence des trous noirs.
http://trousnoirs.multimania.com/Karl Schwarzschild.htm
Karl Schwarzschild

83. Geschichte Des AIP
Translate this page Ein Jahrzehnt später wurde mit karl schwarzschild einer der bedeutendstenAstrophysiker dieses Jahrhunderts zum Direktor berufen.
http://www.aip.de/institute/history_de.html

Institute in General
News / Events / Jobs Research Groups Internal Pages ... Astron. Nachrichten last change 2003 January 15, R. Arlt Geschichte der Potsdamer Astrophysik Berufung Gottfried Kirchs zum Direktor der Sternwarte Bau der neuen Berliner Sternwarte durch Karl Friedrich Schinkel Entdeckung des Planeten Neptun durch Johann Gottfried Galle Berufung Wilhelm Julius Foersters zum Direktor Erster Michelson-Versuch in Potsdam Entdeckung der Kanalstrahlen durch Eugen Goldstein Erste fotografische Radialgeschwindigkeitsmessung durch Hermann Carl Vogel Versuche zum Nachweis der Radiostrahlung der Sonne durch Johannes Wilsing und Julius Scheiner am AOP Berufung von Karl Hermann Struve zum Direktor der Berliner Sternwarte Berufung von Karl Schwarzschild zum Direktor des AOP Bau der Sternwarte in Babelsberg Umzug der Berliner Sternwarte nach Babelsberg Bau des Einstein-Turmes auf dem Telegrafenberg Fertigstellung des 120-cm-Spiegels in Babelsberg Angliederung der Sonneberger Sternwarte an die Sternwarte Babelsberg Beginn der Radiobeobachtungen in Tremsdorf Fertigstellung des 2-m-Spiegels in Tautenburg
Die Entwicklung nach dem 2. Weltkrieg

84. Astrophys. Inst. Potsdam - History
Ten years later one of the most famous astrophysicists of this century,karl schwarzschild, became director of the observatory.
http://www.aip.de/institute/history.html

Institute in General
News / Events / Jobs Research Groups Internal Pages ... Astron. Nachrichten last change 2002 December 19, R. Arlt Chronological Table Introduction of the so-called 'Improved Calendar' in the Protestant states of Germany Enactment of the calendar patent for the Berlin Observator Appointment of Gottfried Kirch as director of the observatory Foundation of the Brandenburg Society Construction of the first observatory in Berlin Construction of the new observatory by Karl Friedrich Schinkel Discovery of the planet Neptune by Johann Gottfried Galle Appointment of Wilhelm Julius Foersters as director Foundation of the Astronomical Recheninstitut Foundation of the Astrophysical Observatory Potsdam (AOP) Construction of the main building of the AOP on the Telegrafenberg at Potsdam First Michelson experiment in Potsdam Discovery of canal rays by Eugen Goldstein First photographic determination of a radial velocity by Hermann Carl Vogel Experiments to find radio emission from the Sun by Johannes Wilsing and Julius Scheiner Completion of the Large Refractor at Potsdam Appointment of Karl Hermann Struve as director of the Berlin Observatory Berufung von Karl Schwarzschild zum Direktor des AOP Construction of the observatory in Babelsberg Relocation of the Berlin Observatory to Babelsberg Introduction of photoelectric photometry by Paul Guthnick in Babelsberg Completion of the Large Refractor in Babelsberg onstruction of the Einstein Tower on the Telegrafenberg Completion of the 120-cm telescope in Babelsberg

85. Princeton - News - Princeton Astrophysicist Martin Schwarzschild Dies
1969. He was born May 31, 1912, in Potsdam, Germany. His father karl schwarzschildwas a celebrated astrophysicist. Martin schwarzschild
http://www.princeton.edu/pr/news/97/q2/0411schw.html
News from
PRINCETON UNIVERSITY
Communications and Publications, Stanhope Hall
Princeton, New Jersey 08544
Tel 609/258-3601; Fax 609/258-1301
FOR IMMEDIATE RELEASE
Contact: Jacquelyn Savani (609) 258-5729
Date: April 11, 1997
Princeton Astrophysicist
Martin Schwarzschild Dies
PRINCETON, N.J.Martin Schwarzschild, Eugene Higgins Professor of Astronomy, Emeritus, at Princeton University, died April 10 at St. Mary Medical Center in Langhorne, Pa., after a heart attack. Schwarzschild was 84 years old. Schwarzschild made seminal contributions to the study of stellar structure and stellar evolution. His work explained the existence of giant stars, with extended hydrogen envelopes around helium cores, and uncovered important new phenomena which occur during a stellar lifetime, including shell flashes and other instabilities. His 1958 book Structure and Evolution of the Stars (Princeton University Press) has been a standard text for a generation of students entering this field. Working with John von Neumann in Princeton in the late 1940s, Schwarzschild was one of the first to capitalize on the powers of electronic digital computers for scientific research. Schwarzschild also collaborated with his Princeton University astrophysics colleague, Lyman Spitzer, on the design of a fusion reactor that mimics the sun. Schwarzschild, like Spitzer, also pioneered in the use of space telescopes for precise imagery of the Sun, planets and stellar systems. His Stratoscope I, a 12-inch diameter solar telescope lifted to 80,000 feet altitude by balloon, was the first instrument to obtain sharp photographs above most of the earth's fluctuating atmosphere, and gave fascinating new information on dynamical processes in the sun's atmosphere. For this work Schwarzschild won the Newcomb-Cleveland Prize of the American Association for the Advancement of Science in 1957. His subsequent Stratoscope II, with a mirror 36 inches in diameter, gave similar first-of-a-kind results of the outer planets and galactic nuclei.

86. Project STELLAR: Prince George's County, Maryland
The Care and Feeding of Black Holes; How Can You See Something that Swallows Light?Category Science Technology Space NASA Education...... Within months, karl schwarzschild found an exact solution of the Einstein fieldequations for a spherical mass. The Two Popular Varieties of Black Holes.
http://lheawww.gsfc.nasa.gov/~bridgman/STELLAR/presentations/blackholes.html
The Care and Feeding of Black Holes or How Can You See Something that Swallows Light?
by William T. Bridgman, Ph.D.
Abstract
Black holes were predicted in Einstein's General Theory of Relativity back in 1915. For decades it was believed that such objects were mathematical curiosities and could not actually exist in Nature. Now black holes are regarded as the best explanation for the incredible power output of quasars, active galactic nuclei, and a number of galactic X- and gamma-ray sources. So what exactily is a black hole and how does it work? If light cannot excape from them, how do astronomers expect to actually see them?
Some History
In 1795, Pierre Simone de Laplace noticed that, using Newton's Theory of Gravitation, if an object of mass M were compressed into a radius r S less than r S = 2 G M / c (where G is the Universal Gravitational Constant and c is the speed of light) then the escape velocity from such an object would exceed the speed of light. We would never be able to observe such objects since the light would never be able to reach us. Laplace proposed that large quantities of matter in the Universe might be invisible due to this phenomenon. Without any real observational evidence at the time for such objects, the idea lay dormant. However in December of 1915

87. The Light Cone: The Schwarzschild Black Hole
A site explaining the schwarzschild solution and how it leads to black holes.Category Science Physics Relativity Black Holes...... Just months after Einstein published his work on his Theory of Gravitation, Karlschwarzschild (1916) found one solution to Einstein's equations the curvature
http://physics.syr.edu/courses/modules/LIGHTCONE/schwarzschild.html
Home PREFACE PRIMEVAL SPECIAL ... Comments?
Schwarzschild's Spacetime:
Introducing the Black Hole
K. Schwarzschild
Just months after Einstein published his work on his Theory of Gravitation, Karl Schwarzschild (1916) found one solution to Einstein's equations: the curvature due to a massive nonrotating spherical object. That is, using Einstein's equation, Schwarzschild had determined how spacetime is curved due to the presence of a nonrotating spherical mass. In practical terms, the Schwarzschild spacetime describes the gravitational field of the Sun,
or of the Earth. (The Sun and the Earth do rotate, but this rotation is negligible in these cases.) This spacetime was studied carefully, and it led to a few physical predictions. Firstly, it did as good a job as Newton's Theory of Gravity in explaining the motion of the planets around the sun. Second, it accounted for a tiny effect concerning the path of the planets ("The Anomalous Advance of the Perihelion") that Newton's Theory was unable to completely account for. The orbit of Mercury was studied, and the prediction was confirmed. Thirdly, it predicted a value for a tiny effect concerning the path of light-rays ("The Bending of Starlight") that Newton's Theory was unable to completely account for. Light from a star passing near the sun was studied. The Einstein Theory correctly predicted the amount of the deflection of starlight. (For practical purposes, one could only make the observation during a solar eclipse since sunlight was much brighter than the starlight to be studied.)

88. Astronomiegeschichte: Personen (S)
schwarzschild
http://www.astro.uni-bonn.de/~pbrosche/persons/pers_s-d.html
Geschichte der Astronomie Personen
Astronomiegeschichte: Personen (S)
English Version

89. ½´¹Ù¸£Ã÷½ÇÆ®ÀÇ ¹ÝÁö¸§ Schwarzschild's Radius
The summary for this Korean page contains characters that cannot be correctly displayed in this language/character set.
http://www.3jeong.com/astro/data/schwarzschilds-radius.html

Schwarzschild's Radius
    ºí·¢È¦(black hole)ÀÇ ¹ÝÁö¸§.
    ¿©±â¿¡¼­ Á¤ÀǵǴ ºí·¢È¦ÀÇ ¹ÝÁö¸§À» ½´¹Ù¸£÷½ÇÆ®¹ÝÁö¸§À̶ó°í Çϴµ¥, Áö±¸ÀÇ °æ¿ì ¾à 1 cm°¡ µÈ´Ù. Áï Áö±¸°¡ ȸÀüÇÏÁö ¾Ê´Â ºí·¢È¦ÀÌ µÇ·Á¸é ¹ÝÁö¸§ÀÌ ¾à 1 cm°¡ µÇ¾î¾ß ÇÑ´Ù´Â ¶æÀÌ´Ù.
    ½´¹Ù¸£÷½ÇÆ®¹ÝÁö¸§Àº µ¼ÀÇ Áú·®¿¡ ºñ·ÊÇÑ´Ù. µû¶ó¼­ Áú·®ÀÌ Áö±¸º¸´Ù ¾à 30¸¸ ¹è³ª µÇ´Â žçÀÇ °æ¿ì´Â 3 km°¡ µÈ´Ù.

Schwarzschild, Karl
    1893³â ¹ÀÇî´ëÇп¡ ÀÔÇÐÇÏ¿© H.Á©¸®°Å¿¡°Ô µ¹®ÇÐ Áöµµ¸¦ ¹Þ¾ÒÀ¸¸ç, Á¹¾÷ ÈÄ¿¡´Â ±«Æ°Õ´ëÇÐÀÇ µ¹®´ë¿¡¼­ ±Ù¹«ÇÏ¿´´Ù.
    Àú¼­·Î´Â ¡¶±«Æ°Õ ±¤µµøÁ¤£ºGottinger Aktinometrie¡·ÀÌ ÀÖ´Ù. ±× ¿Ü¿¡ ¼öÇС¤À̷й°¸®Çп¡µµ ¾à°£ÀÇ ³í¹®ÀÌ ÀÖ°í, »ó´ë¼ºÀÌ·Ð ¹× ʱâÀÇ ¾çÀÚ·Ð(åÖí­Öå)¿¡ °üÇÑ ¿¬±¸µµ ÀÖ´Ù.
    ±×ÀÇ ¾Æµé M.½´¹Ù¸£÷½ÇÆ®´Â ±«Æ°Õ´ëÇÐ ±³¼ö·Î ÀÖ´Ù°¡ ³ªÄ¡½º µ¶ÀÏÀ» Å»âÇÏ¿© ¹Ì±¹¿¡ ±ÍÈ­, ÇÁ¸°½ºÅÏ´ëÇÐ µ¹®ÇÐ ±³¼ö·Î ëÀÓÇÏ¿´´Ù.

90. Address Information For Proposal 9425
Space Telescope European Coordinating Facility Address European Southern ObservatoryKarl-schwarzschild-Strasse 2 Garching bei Munchen State Zip D-85748
http://www.stsci.edu:8083/cgi-bin/get-address-info?9425

91. Fellows
Munich. Dr.Carlos HernandezMonteagudo Max-Planck-Institut für AstrophysikKarl-schwarzschild-Str. 1 Postfach 1317 D-85741 Garching
http://www-astro.physics.ox.ac.uk/cmbnet/fellows.html
CMBNET Postdocs
Oxford
Cambridge
  • Dr.Alexandre Canavezes Institute of Astronomy Madingley Road Cambridge CB3 0HA United Kingdom Telephone: 44 (0)1223 330 Fax number: 44 (0)1223 337523 E-mail: agc@ast.cam.ac.uk http://www.ast.cam.ac.uk/~agc
Geneva
  • Dr. Alain Riazuelo Service de Physique Theorique CEA/Saclay F 91191 Gif sur Yvette cedex Telephone: E-mail: riazuelo@spht.saclay.cea.fr
  • Dr. Samuel Leach Department de Physique Theorique 24, quai Ernest-Ansermet 1211 Geneve Switzerland Telephone: +41227026384 E-mail: samuel.leach@physics.unige.ch

92. Editions Jacques Gabay - Index Des Auteurs
Translate this page SARTHOU Ch. SCHOENFLIES Arthur. SCHRODINGER Erwin. SCHUBERT H. SCHWARZSCHILDKarl. SELIGMAN-LUI G. SELIVANOV D. SERRET Joseph-Alfred. SIERPINSKI Waclaw.
http://www.gabay.com/sources/Liste_Auteurs.asp?Lettre=S

93. ¤Ñ¤å¤p¦Ê¬ì
The summary for this Chinese (Traditional) page contains characters that cannot be correctly displayed in this language/character set.
http://www.phy.cuhk.edu.hk/astroworld/dictionary/dictionary_heavy.html
var i=0; var coloring=new Array(21); coloring[0]="FFEAEA"; coloring[1]="FFF0EA"; coloring[2]="FFF7EA"; coloring[3]="FFFDEA"; coloring[4]="FBFFEA"; coloring[5]="F4FFEA"; coloring[6]="EEFFEA"; coloring[7]="EAFFEC"; coloring[8]="E8FFF0"; coloring[9]="EAFFF9"; coloring[10]="EAFFFF"; coloring[11]="EAF9FF"; coloring[12]="EAF2FF"; coloring[13]="EAECFF"; coloring[14]="EEEAFF"; coloring[15]="F4EAFF"; coloring[16]="FBEAFF"; coloring[17]="FFEAFD"; coloring[18]="FFEAF7"; coloring[19]="FFEAF0"; coloring[20]="FFEAEB";
¤Ñ¤å¤p¦Ê¬ì
Active Galaxy (¬¡ÅD¬P¨t) Association (¬P¨ó) Barred Spiral Galaxy (´Î±Û¬P¨t) Disk Component (»È½L³¡¥÷) Double-Lobed Radio Source (Âù¤®g¹q·½) Dwarf Elliptical Galaxy (¸G¾ò¶ê¬P¨t) Elliptical Galaxy (¾ò¶ê¬P¨t) Event Horizon (¨Æ¥óªÆ¬É) Gravitational Redshift (­«¤O¬õ²¾) Halo (»È·w) Inner Event Horizon (¤º¨Æ¥óªÆ¬É) Irregular Galaxy (¤£³W«h¬P¨t) Local Group (¥»¬P¨t¹Î) Milky Way Galaxy (»Èªe¨t) Outer Event Horizon (¥~¨Æ¥óªÆ¬É) Seyfert Galaxy (¶ë¦ò¯S¬P¨t) Spiral Arm (±ÛÁu) Spiral Galaxy (±Û´õ¬P¨t) Stellar Population (¬P±Ú) Supercluster (¶W¬P¨t¹Î)
¤£³W«h¬P¨t
(Irregular Galaxy) ¤j³Á­õ­Û¬P¨t (Large Magellanic Cloud) »P ¤p³Á­õ­Û¬P¨t (Small Magellanic Cloud) »P»Èªe¨tªº¶ZÂ÷«Üªñ¡C ¤º¨Æ¥óªÆ¬É (Inner Event Horizon) ¦b¦¹ä¬É¤º¨S¦³¥ô¦óªF¦è¯à°÷°k²æ¡C ¥~¨Æ¥óªÆ¬É (Outer Event Horizon) ¥»¬P¨t¹Î (Local Group) ¥P¤k®y¬P¨t ¡A ·à¤l®y I ¬P¨t ©M ¤j³Á­õ­Û¶³ ) ªº¬P¨t¸s¡C ¼w°ê¤Ñ¤å¾Ç®a©Mª«²z¾Ç®a ¥v¥Ë¦è ¤¤¤l²¨ÖÀ£¤O (neutron degeneracy pressure) ¥ç¤£¯à¹ï§Ü­«¤O¡A¶W¶V®Ö¤lª«½èªº±K«×¡A±K«×±µªñµL­­¤j¡C¤£¦ÛÂ઺«í¬P³Ì«á¦¬ÁY¦¨¬°¥v¥Ë¦è©_ÂI (Schwarzschild singularity)¡C

94. Black Holes
A few weeks later, in 1916, Einstein, working in Berlin, received a paper from KarlSchwarzschild, an astronomer who, though no longer young, was serving in
http://www.geocities.com/CapeCanaveral/Lab/4059/blackholes.html
Black Holes
A black hole Now imagine an object with such an enormous concentration of mass in such a small radius that its escape velocity was greater than the velocity of light. Then, since nothing can go faster than light, nothing can escape the object's gravitational field. Even a beam of light would be pulled back by gravity and would be unable to escape. In 1784, the English geologist John Michell realized that it would be theoretically possible for gravity to be so overwhelmingly strong that nothing, not even light traveling at 186,000 miles a second, could escape. To generate such gravity, an object would have to be very massive and unimaginably dense. At the time, the necessary conditions for "dark stars", as Michell called them, seemed physically impossible. His ideas were published by the French mathematician and philosopher Pierre Simon Laplace in two successive editions of an astronomy guide, but were dropped from the third edition. In Laplace's 1795 edition, he put forward the following equation saying what the mass and radius would have to be to form a black hole. V esc = (2GM/r) = c Where Newton had used the motion of the moon around the earth as a guiding example in his work, Einstein used this deviation of Mercury. The central ideas of general relativity were already in place. At issue was the exact form of the curvature term G in the Einstein equation G = kT. A precise relativistic model of the sun's gravitational field was not needed. Einstein used a simple polynomial approximation. Late in 1915 he succeeded, and the 43 second lag was eliminated. A few weeks later, in 1916, Einstein, working in Berlin, received a paper from

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 

free hit counter